Chapter 3:

Crystal Binding and
Elastic Constants



electrostatic interaction between electrons (negatively charged) and nuclei
(positively charged) defines cohesion of solids

* Not magnetic forces

* Not gravitation

electrostatic interaction

e exchange energy

e van der Waals forces
* covalent forces

Figure 1 The principal types of crystalline binding. In (a) neutral atoms with closed electron
shells are bound together weakly by the van der Waals forces associated with fluctuations in the
charge distributions. In (b) electrons are transferred from the alkali atoms to the halogen atoms,
and the resulting ions are held together by attractive electrostatic forces between the positive and
negative ions. In (c) the valence electrons are taken away from each alkali atom to form a commu-
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bound to-
gether by the overlapping parts of their electron distributions.



Cohesive Energy:

The energy required to remove a single atom from the crystal
* the atom is neutral afterwards
» atinfinite separation distance

Lattice energy:

The energy required to remove a single atom from an ionic crystal
* inanionized state
e atinfinite separation distance

Let us have a look at
* Cohesive Energy
* Melting Point
e Bulk Modulii



25.67

Li Be
158. | 320.
163 §332°
37.7 | 76.5
Na Mg

Table 1 Cohesive energies

Energy required to form separated neutral atoms in their ground
electronic state from the solid at 0 K at 1 atm. The data were supplied by

Prof. Leo Brewer.
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Table 3 Isothermal bulk modulii and compressibilities at room
H temperature He 1)
10.002 After K. Gschneidner, Jr., Solid State Physics 16, 275-426 (1964); several 0.00
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Inert Gas Crystals (Xe, Ar, K, .....)

Outer electron shells are completely filled
Spherically symmetric distribution of outermost electrons

* Insulators (no free electrons)

* transparent (no low energy dipole transitions)
* weakly bond

* low melting point

e only van der Waals Forces (what are vd. Waals Forces ?)



Figure 2 Cubic close-packed (fce) crystal structure of the inert gases Ne, Ar, Kr, and Xe. The lat-
tice parameters of the cubic cells are 4.46, 5.31, 5.64, and 6.13 A, respectively, at 4 K.



Nearest-

neighbor

distanoce,
in A

What is the Lennard-Jones Potential ?

Table 4 Properties of inert gas crystals

Experimental
cohesive
energy

kJ/mol

eV/atom

(Extrapolated to 0 K and zero pressure)

Melting
point, K

Parameters in
Lennard-Jones

He (liquid
Ne 3.13
Ar 3.76
Kr 4.01
Xe 4.35

t zero pressure)
1.88 0.02
7.74 0.080

11.2 0.116
16.0 0.17

24.56
83.81
115.8
161.4

~ about only 1 % of ionization potential

R.,/o ~ 1.09

I;;ltlzz?igil potential, Eq. 10
of free €, o,
atom, eV in 10" erg in A
24.58 14 2.56
21.56 50 2.74
15.76 167 3.40
14.00 225 3.65

320 3.98

12.13




Van der Waals — London Interaction

Which Forces ?

Inert
gas
atom

neutral atom neutral atom

l

No Coulomb Forces ! ......

-J



Inert Gas Core (charge +q) Inert Gas Core (+q)

Electron (-q) Electron (-q)

i~< : -

Figure 3 Coordinates of the two oscillators.

Two identical, linear, harmonic oscillators 1 and 2

1

%0_ O p2+ Cxl 2 p2+ CTO : (].)
Coulomb Interaction
. 82 82 _ 62 = 82 .
(CGS) %I_R-I_R"'_xl_xg R+x1 R_xQ’ <2)



2e%xx:
<R mmp =02

le P R3
symmetric mode asymmetric mode
| 1
e = (a7 + x) =y — ) ,
o N
in coordinates of 1 and 2
xl=%(xs+xa) > x2=%(xs_xa) .
plz—l—(pﬁpa) : pzzi(ps—pa) :
V2 V2



w, given by (C/m)"2.
26 / . 1122\ 1[{28Y
= T = == S (< TS
) [(C =+ R3) m] wy| 1= 5 e s\ CRs + ; (8)
Zero-Point Energy of interacting system: éﬁ(ws + w,)

Zero-Point Energy of a non-interacting system: éﬁwo

{22 \* A
AU = 35(Aw, + Aw,) = —hw, * 3 (CRB) = —=, (9)
The interacting system has a lower energy by AU
because of charge fluctuations (van der Waals Force)

also called London Interaction or induced dipole-dipole interaction



AU = H(Aw, + Aw,) = —hw, %(2‘8—) =k (9)

approximately: A= fiwya”

strongest optical absorption line electronic polarizability (Chapter 15)



attractive van der Waals Interaction

Figure 4 Electronic charge distribu-
tions overlap as atoms approach. The
solid circles denote the nuclei.

repulsive interaction due to overlap of charge density (Pauli exclusion principle)



(a)
Total electron
energy: —78.98 eV

Total spin zero

(b)
Total electron
energy: —59.38 eV

@ + @ )
1sT 1sd 1sT1sd
1sT 1sT 1sT2sT
Total spin one

Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro-
gen atoms are pushed together until the protons are almost in contact. The energy of the electron
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec-
trons have antiparallel spins and the Pauli principle has no effect: the electrons are bound by
—78.98 eV. In (b) the spins are parallel: the Pauli principle forces the promotion of an electron from
a 1s T orbital of H to a 2s T orbital of He. The electrons now are bound by -59.38 eV, less than (a)
by 19.60 eV. This is the amount by which the Pauli principle has increased the repulsion. We have
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b).



Lennard-Jones Potential (approximate description)

attractive van der Waals forces

repulsive interaction

Force between two atoms: F=-dU/dR



—1

0.2 0.4 0.6 0.8 1.0 1.2
R/o—

Figure 6 Form of the Lennard-Jones potential (10) which describes the interaction of two inert gas
atoms. The minimum occurs at R/o- = 2% = 1.12. Notice how steep the curve is inside the minimum,
and how flat it is outside the minimum. The value of U at the minimum is —€; and U = 0 at R = 0.



Equilibrium Lattice Constant

N atoms in the crystal

et () -5 ()]
\

/\ J
double counting

distance between atom i and j in units
of nearest neighbour distance R

>p; 12 =12.13188 ; 2 p;®=14.45392 .

J

close to 12 (humber of neighbors — which dominate the interaction)



Minimum distance (Force = 0)

12

dUtot _
dR

mm) R /o =109 ,

Ne Ar Kr
Ry/o 1.14 1.11 1.10

Variations due to zero-point quantum effects

0= —2N6[<12)(12.13)% — (6)(14.45) =

Xe
1.09

%%



Cohesive Energy (at T = OK, O Pressure)

U.(R) = 2Ne [(12.13)<%>h2 - (14.45)(%)6]

at R = R, UierlRo) = —(2.15)(4Ne)

Quantum-mechanical corrections act to reduce the binding by 28, 10, 6, and 4 percent
for Ne, Ar, Kr, Xe respectively.

The heavier the atom, the smaller the quantum correction.



lonic Crystals

* lonic crystals are made of positively and negatively charged ions and
result from respective Coulomb Forces

* ions donate or accept an electron from the counterpart to completely
fill all electronic shells —similar to inert gas

e charge is basically spherically symmetrically distributed with minor deformations
due to the neighbors

Li: 1s2 2s! F: 152 252 2p® => Li+: 1sZand F-: 152 252 2p®






+ 514eV — @

Tonization
energy

3.61 eV

Electron

affinity

A TN

energy

Figure 8 The energy per molecule unit of a crys-
tal of sodium chloride is (7.9 — 5.1 + 3.6) = 6.4 eV
lower than the energy of separated neutral atoms.
The lattice energy with respect to separated ions
is 7.9 eV per molecule unit. All values on the fig-
ure are experimental. Values of the ionization en-

Cohesive ergy are given in Table 5, and values of the elec-

tron affinity are given in Table 6.



Table 6 Electron affinities of negative ions

The electron affinity is positive for a stable negative ion.

Atom Electron affinity energy eV Atom Electron affinity energy eV
H 0.7542 Si 1.39
Li 0.62 P 0.74
C 1.27 S 2.08
O 1.46 Cl 3.61
F 3.40 Br 3.36
Na 0.55 I 3.06
Al 0.46 K 0.50

S B R B S N M e s sy gy
Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).



Electrostatic or Madelung Energy (Coulomb Force)

F~ Cth/"2

« attractive electrostatic force (Madelung energy)
* van der Waals Forces are present but are very weak (1-2 %)
* repulsive forces are active (see inert gases)

U, = E’UU Energy between ionsiand j
J

’ Note:
Uij = A exp(—’ry/p) X qu/Tij ) CGS: qz/rij

/ SI: q2/4me,r;

central repulsive potential (r?)



It is convenient again to introduce quantities p;; such that r; = p;R, where
R is the nearest-neighbor separation in the crystal. If we include the repulsive
interaction only among nearest neighbors, we have

e 2
(CGS) A expl—Rip) — % (nearest neighbors)

U= | | ¢ (19)

ipj B (otherwise).
1 ij
Thus number of nearest neighbors
i
(CGS) U =NU,= N(z)te"“”’ - %) , (20)
(£

a=>)
J

= Madelung constant .

Pij




Determine equilibrium separation (F = dU/dR = 0)

=> . . .
/ very short range repulsive interaction

Nag® N
U, = __ﬂ_( _ ﬂ) p~0.1R,
Ry Ry
Madelung Energy
_ vy (E) -
o= 2 Dy Definition of the Madelung Constant
F o

To give a stable crystal: oo >0

WL s Ty

Figure 9 Line of ions of alternating signs, with distance R between ions.

- Y NN U 7
a—2[1 2+:3 4+ ]



For a 1D Chain:

a=2In2

For 2D and 3D — very difficult to calculate



Typical values of the Madelung constant are listed below, based on unit
charges and referred to the nearest-neighbor distance:

Structure Q

- Sodium chloride, NaCl 1.747565

- Cesium chloride, CsCl 1.762675
- Zinc blende, cubic ZnS 1.6381 "



12~

10 Repulsive energy
(2.4 x 10%) exp(-R/0.30) eV

R, in 103 cm

Energy, in eV
o
Ut
m o

Total | Equilibrium

4~ energy \\ pOSitiOl'l
6 %
N Coulomb energy

(25.2/R) eV

Figure 10 Energy per molecule of KCI crystal, showing Madelung (coulomb) and repulsive
contributions.



Table 7 Properties of alkali halide crystals with the NaCl structure

All values (except those in square brackets) at room temperature and atmospheric pressure, with no correction for changes in Ry and U from

absolute zero. Values in square brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer.

Nearest- Repulsive Repulsive LB srenibrasmammel

neighbor Bulk modulus B, energy range e

separation in 10" dyn/cm® parameter parameter FRiteess deins, 10 kel Anal

Ryin A or 10** N/m? zA,in 107% erg p,in A Experimental Calculated

S S o AR N
LiF 2.014 R 6.71 A 0.296 0.291 242.3[246.8] 242.2
LiCl 2.570 o 2.98 0.490 0.330 198.9[201.8] 1 192.9
LiBr 2.751 2.38 0.591 0.340 189.8 181.0
Lil 3.000 (1.71) 0.599 0.366 | &7 166.1
NaF 2.317 4.65 0.641 0.290 214.4[217.9] 215.2
NaCl 2.820 2.40 1.05 0.321 182.6[185.3] 178.6
NaBr 2.989 1.99 1.33 0.328 173.6[174.3] 169.2
Nal 3.237 1.51 1.58 0.345 163.2[162.3] 156.6
KF 2.674 3.05 1.31 0.298 189.8[194.5] 189.1
KCl 3.147 1.74 2.05 0.326 165.8[169.5] 161.6
KBr 3.298 1.48 2.30 0.336 158.5[159.3] 154.5
KI 3.533 120 2.85 0.348 149.9[151.1] 144.5
RbF 2.815 2.62 1,78 0.301 181.4 180.4
RbCl 3.291 1.56 3.19 0.323 159.3 155.4
RbBr 3.445 1.30 3.03 0.338 152.6 148.3
RbI 3.671 1.06 3.99 0.348 144.9 139.6

A\ 4
Ut SR A s e e S B U R S B e S S R R A A RN S A e T o O L e S A S LR L L S G A B e R e

Data from various tables by M. P. Tosi, Solid State Physics 16, 1 (1964).

p~0.1R,




Covalent Crystals

Occupied Inner Shells

Charge Transfer

— T

Occupied Outer Shells

lonic Crystal

/ different atoms

Unoccupied Outer Shells

equal atoms Si, Ge, ......




equal atoms Si, Ge, ......

share electrons



Hydrogen System (1 electron) ’H—iA— Ze? B Z'e?  Z7'e?
2m deora  4degrp deg R

/

Kinetic Energy

electron-nuclei Coulomb Energy

»;? @ nuclei-nuclei Coulomb Energy

A 7® R e, Ze
Figure 1.5: one electron in a two
hydrogen system



Solve Schroedinger Equation H \Dﬂj() — qu MO

o [ W*HWAr
N [ U*Wdr

LCAO approximation (Linear Combination of Atomic Orbitals)

UV =cyWVy+cp¥p

/

Solution of 1-Atom Hydrogen System



Hip = / U 4 HVY pdr exchange integral

HAA — / g’g'H\I’Ad’F

Hiq+= H,
By < F, = fLil = qAB

o

S = / U,V pdr overlap integral



Figure 1.6: Two identical but isolated sys-
tems

binding antibinding (-)

Hayg o - Hpp

anti-binding binding (+)

Figure 1.7: one electron in a two hydrogen system and results given by LCAO. (left)
Amplitude of wave functions for the binding (+) and the anti-binding (-) case. (right)
Result of the achieved delocalization of the electron over two atoms, is a lowered energy
of the total system.



2 Hydrogen atoms
(with 2 electrons)

HA ,*
.f’; ._ \ / | \\,

antl-binding - .

2 electrons in the same state (binding)
—> (Pauli Principle) s =+/- % ..... Total Spin S=0

= We loose Coulomb Energy (close proximity) The balance of Coulomb

— We gain Exchange Energy Energy and Exchange Energy
— determines if we have a

2 electrons in different states (anti-binding) magnetic state !

=35=0,1 (see later Chapters)

—> We gain Coulomb Energy
—> We loose Exchange Energy
= 1 electron is in a higher state = loss of energy

—_




0.6

0.4 AT

13.6 eV
o

Do
T

Energy in rydberg units Ry
S
DO

-04

0 s 2 3 4 5 6
Intermolecular separation, in Bohr units ag = 0.53 A

Figure 12 Energy of molecular hydrogen (H,) referred to separated neutral atoms. A negative
energy corresponds to binding. The curve N refers to a classical calculation with free atom charge
densities; A is the result for parallel electron spins, taking the Pauli exclusion principle into ac-
count, and § (the stable state) for antiparallel spins. The density of charge is represented by con-
tour lines for the states A and S.



C: 1s? 2s? 2p? (equivalent for Si, Ge, Sn, ....)

l 2 occupied states in 6 different states
but: sp3 hybridization
C: 1s2 2s! 2p3

Figure 1.9: Coordination ge-
ometry for C, Si, Ge after sp®

atom) 2s — 2p: loss of energy

rstal) 2 _,19. 3 RS DU f enerov via 4 bindine st: .
crystal) 2s™2p” — sp”: gain of energy via 4 binding states
structure) 3 dimensional
excitation) band gap = binding - anti-binding state
insulator) band gap > 3 eV

(
(c1
(
(
(
(

semiconductor) band gap < 3 eV



sp*: 2s%2p* — [2s'2p,2p,12p. — sp? + half filled 2p. [C, Si, Ge]

— (structure) 2 dimensional

— non-conductive in Carbon-plane

— conductive in m-plane
sp* 2822p% — [2812p,2p,12p7 — sp* + filled 2p. [P, As]
sp: 2572pt — (25" 2p,[2p72p2 — sp [Te, Se]

— (structure) 1 dimensional

Bor-Nitrid: B (2s?2p') N (2s?2p®) — charge transfer — B (2s?2p?) N (2522p?)
— sp® bonds with ionic character.



electrons forming the bond are partly localized
in the region between the atoms/\

cl- Na*

i / \\‘\\}é‘f? = /7
T A d A

Figure 1.13: (a) Electron density distribution in a NaCl crystal. Electrons are localized
near the atoms with a larger density at Cl. (S. Gottlicher, Acta Cryst. B 24, 122 (1968)).
(b) Electron density distribution for a Si-crystal. Typical for a covalent system, large
electron density is localized between the atoms (Y. W. Yang and P. Coppens, Solid State
Commun. 15, 1555 (1974)).

[

N




Figure 11 Calculated valence electron concentration in germanium. The numbers on the con-
tours give the electron concentration per primitive cell, with four valence electrons per atom
(eight electrons per primitive cell). Note the high concentration midway along the Ge-Ge bond,
as we expect for covalent bonding. (After J. R. Chelikowsky and M. L. Cohen.)



The covalent bond has strong directional properties (Fig. 11). Thus car-
bon, silicon, and germanium have the diamond structure, with atoms joined to
four nearest neighbors at tetrahedral angles, even though this arrangement
gives a low filling of space, 0.34 of the available space, compared with 0.74 for
a close-packed structure. The tetrahedral bond allows only four nearest neigh-
bors, whereas a close-packed structure has 12. We should not overemphasize
the similarity of the bonding of carbon and silicon. Carbon gives biology, but
silicon gives geology and semiconductor technology.

The binding of molecular hydrogen is a simple example of a covalent bond.
The strongest binding (Fig. 12) occurs when the spins of the two electrons are
antiparallel. The binding depends on the relative spin orientation not because
there are strong magnetic dipole forces between the spins, but because the Pauli
principle modifies the distribution of charge according to the spin orientation.
This spin-dependent coulomb energy is called the exchange interaction.



The Pauli principle gives a strong repulsive interaction between atoms
with filled shells. If the shells are not filled, electron overlap can be accommo-
dated without excitation of electrons to high energy states and the bond will be
shorter. Compare the bond length (2 A) of Cl, with the interatomic distance
(3.76 A) of Ar in solid Ar; also compare the cohesive energies given in Table 1.
The difference between Cl, and Ar, is that the Cl atom has five electrons in
the 3p shell and the Ar atom has six, filling the shell, so that the repulsive in-
teraction is stronger in Ar than in CI.

The elements C, Si, and Ge lack four electrons with respect to filled
shells, and thus these elements (for example) can have an attractive interaction
associated with charge overlap. The electron configuration of carbon is
1s*25°2p*. To form a tetrahedral system of covalent bonds the carbon atom
must first be promoted to the electronic configuration 1s*2s2p®. This promo-
tion from the ground state requires 4 eV, an amount more than regained when
the bonds are formed.



Table 8 Fractional ionic character of bonds in binary crystals

Fractional Fractional

Crystal ionic character Crystal ionic character

Si 0.00

SiC 0.18 GaAs 0.31

Ge 0.00 GaShb 0.26

ZnO 0.62 AgCl I (1.7) 0.86

ZnS 0.62 AgBr ’ 0.85

ZnSe 0.63 Agl 0.77

ZnTe 0.61 MgO 0.84

(2,6)

CdoO 0.79 MgS (2,6) 0.79

CdS 0.69 MgSe 0.79

CdSe 0.70

CdTe 0.67 LiF 0.92
NaCl (1,7) 0.94

InP 0.42 RbF 0.96

InAs (3,5) 0.36

InSb 0.32

R e R R i T e T S R S
After J. C. Phillips, Bonds and bands in semiconductors.



Metals:

- high electrical conductivity
- large number of available electrons to move freely (typ. 1 — 2 electrons / atom)

- these electrons are called “conduction electrons”



Metallic bonds are important for electron transport. From a theoretical point of view,
they have the same origin as covalent bonds, i. e. the overlap of electron wave functions
from different atoms. This overlap we call a covalent bond, when mainly electrons of
only two atoms form a new electronic states. This is different for bonds which we call
metallic bonds. Fig. 1.14 gives an illustration.

3.00
Ni: 452 38
2.25
qJ 1.50 1
© 3d,,
3 4s
——— 0.75 1
Q
< 0.0 -
nearest next 3rd
neighbor nearest nearest
distance neighbor neighbor
o H distance distance
From: S. P. Walch and W. A. Goddard lll, Surf. Sci. 72, 645 (1978)
-1.50 | | | | | | ]
0.0 0.625 1.250 1.875 2.500 3.125 3.790 4.375 S5.000

in units of Bohr-radii

Figure 1.14: Amplitude of wave functions with distance for Ni.



Nickel has 4s2.3d® outer shells - the inner shells lay much deeper in energy and are
less relevant for bonding processes. The 3d shell is localized near the core and extends up
to a distant of the nearest neighbor. Electrons from further away atoms do not interfere.
The 4s shell has a very high electron density very close to the core (due to the stronger
attractive Coulomb interaction the 4s shells is lower in energy than the 3d shell). The
4s shell also has a high electron density very far away from the atom and in Ni-crystal
extends much beyond the nearest neighbor. The consequence is. that 4s electrons will
start interacting with all electrons from more far away atoms.

Ni: 452 3¢®
2.25 [~
qJ 1.50
© 3d,,
3 4s
= 0.75 1
Q.
< 0.0 .
nearest next 3rd
neighbor nearest nearest
distance neighbor neighbor
o H distance distance
From: 8. P. Walch and W. A. Goddard Ill, Surf. Sci. 72, 645 (1978)
-1.50 | | | ] | | |
0.0 0.625 1.250 1.875 2.500 3.125 3.750 4.375 S.000

in units of Bohr-radii

Figure 1.14: Amplitude of wave functions with distance for Ni.



The 3d electrons will form covalent bonds with neighboring atoms and is directional.
The 4s electrons will be smeared over a large area - therefore, the angular distribution
of the wave function will play a much less important role.

Moreover. as the 4s, 3p. and the 3d shells are close in energy. all these electrons will
form a quasi continuous energy range with available states. This we call an electronic
band, which is partially filled.

e Alkali metals: Na. Li, K. Rb, Cs — s-bands

e Farth alkali metals: Be., Mg. Ca. Sr. Ba — sp-bands

2.25
qJ 1.50 1
©O 3d,,
3 4s
——— 0.75 1
Q
< 0.0 -
nearest next 3rd
neighbor nearest nearest
distance neighbor neighbor
o H distance distance
From: S. P. Walch and W. A. Goddard IIl, Surf. Sci. 72, 645 (1978)
-1.50 | | | | | | ]
0.0 0.625 1.250 1.875 2.500 3.125 3.750 4.375 S.000

in units of Bohr-radii

Figure 1.14: Amplitude of wave functions with distance for Ni.



METALS

Metals are characterized by high electrical conductivity, and a large num-
ber of electrons in a metal are free to move about, usually one or two per atom.
The electrons available to move about are called conduction electrons. The
valence electrons of the atom become the conduction electrons of the metal.

In some metals the interaction of the ion cores with the conduction elec-
trons always makes a large contribution to the binding energy, but the charac-
teristic feature of metallic binding is the lowering of the energy of the valence
electrons in the metal as compared with the free atom.

There is a continuous range of crystals between the ionic and the covalent
limits. It is often important to estimate the extent a given bond is ionic or cova-
lent. A semiempirical theory of the fractional ionic or covalent character of a

bond in a dielectric crystal has been developed with considerable success by
J. C. Phillips, Table 8.



The binding energy of an alkali metal crystal is considerably less than that
of an alkali halide crystal: the bond formed by a conduction electron is not very
strong. The interatomic distances are relatively large in the alkali metals because
the kinetic energy of the conduction electrons is lower at large interatomic
distances. This leads to weak binding. Metals tend to crystallize in relatively

close packed structures: hep, fee, bee, and some other closely related structures,
and not in loosely-packed structures such as diamond.

In the transition metals there is additional binding from inner electron shells.
Transition metals and the metals immediately following them in the periodic
table have large d-electron shells and are characterized by high binding energy.



HYDROGEN BONDS

Because neutral hydrogen has only one electron, it should form a covalent
bond with only one other atom. It is known, however, that under certain condi-
tions an atom of hydrogen is attracted by rather strong forces to two atoms,
thus forming a hydrogen bond between them, with a bond energy of the

order of 0.1 eV. It is believed that the hydrogen bond is largely ionic in charac-

ter, being formed only between the most electronegative atoms, particularly F,

O, and N. In the extreme ionic form of the hydrogen bond, the hydrogen atom

loses its electron to another atom in the molecule; the bare proton forms the
hydrogen bond. The atoms adjacent to the proton are so close that more than

two of them would get in each other’s way; thus the hydrogen bond connects
only two atoms (Fig. 13).

The hydrogen bond is an important part of the interaction between H,O
molecules and is responsible together with the electrostatic attraction of the
electric dipole moments for the striking physical properties of water and ice. It
is important in certain ferroelectric crystals and in DNA.



Figure 13 The hydrogen difluoride ion HF;
is stabilized by a hydrogen bond. The sketch
is of an extreme model of the bond, extreme
in the sense that the proton is shown bare of

electrons.




Figure 1.15: O-H is a covalent bond with a large
charge transfer. As a result, H is covalently bond
to one Oxygen and at the same time interacts with
other charged Oxygen atoms.



Elastic Properties: Strain

i object ‘ deformation

(here in x and y direction)

> \
X
* Continuum approximation:
e crystal viewed as a homogeneous continuous medium
(instead of a periodic array of atoms)
 validity: elastic waves with A > 10 nm (f < 101! Hz)

* described by a (3 x 3) tensor g; (or g;in Kittel’s Book)
* assume Hooke’s Law & 24 Newton’s Law: (F = - k Ax, with k the spring constant)



spring constant f

Uy U Uy

I] — . . . .
a longitudinal wave in a cubic system:

Mu,, :f(u(n+1)1 — Mn1) —f(unl — M(n—1)1)
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Miiy, :f(”(n+1)1 — un1) — fum — ”(n—l)l)

l small displacement
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=) o=, — velocity of acoustic wave in a cubic crystal
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along one of the cubic axes.
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Tensor of Deformation:

=(l+ e )x + €,y +€,2
= gax (1t &)y + &2
Xt (Lt )z .

g;: dimensionless, <<'1

) x' x' =1+2e, +e -I-e + €

Xz

whence x' =1+¢€, +"-

aXe€s are €., €

v €y € TESpECtively, to the first order.

— uniform deformation (26)

. The fractional changes of length of the %, y, and 2



T=xX+yy+22

l uniform deformation

= / ! !/
r=xx+yy +zz

Displacement R=r"=r=x (X' -X+y (Y -y)+z(Z - Z)
= (XEp + YE, +2E,) X + ...

This may be written in a more general form by introducing u, v, w such that
the displacement is given by

R(r) = u(r)x + o(r)y + w(r)z . (29)




If deformation is nonuniform — u,v,w are related to local strains.:

~S aul
XE,, =X Ix etc,

>

90° 90°
§\ &
90° §
X
i
(a) (b)

Figure 14 Coordinate axes for the description of the state of strain; the
orthogonal unit axes in the unstrained state (a) are deformed in the
strained state (b).






Dilation

The fractional increase of volume associated with a deformation is called
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of
edges X, ¥, Z has a volume after deformation of

Vi=x'+y' Xz', (33)

by virtue of a well-known result for the volume of a parallelepiped having
edgesx',y', z'. From (26) we have

1 + e.'\'x e'ty Exz
! ! ] AT ~
£y Xg'=| g, 1L+, €. |=1+e,te,te,. (34)
sz ezy 1 + EZZ

Products of two strain components have been neglected. The dilation & is then
given by

V' -V

BEV

=8, te, e, . (35)




Stress (force):

X Xy X0 Y, Y, Yo, 20, 2y, Z. 2 Stress Components (in force per unit area)

The normal of the plane, the force is applied to

The direction of the force

Figure 15 Stress component X, is a force applied in the
x direction to a unit area of a plane whose normal lies in
the x direction; X, is applied in the x direction to a unit
area of a plane whose normal lies in the y direction.



The number of independent components reduces from 9 to 6 (the total torque must be zero)

Y.=Z,5 %=%3 %=%, (36)

Figure 16 Demonstration that for a body in static equilibrium
Y, = X,. The sum of the forces in the x direction is zero. The sum
of the forces in the y direction is also zero. The total force vanishes.
The total torque about the origin is also zero if ¥, = X,.



Elastic Energy Density

(39)

(40)



ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS

Hooke’s law ptates that for sufficiently small deformations the strain is di-

rectly proportional to the stress, so that the strain components are linear func-

tions of the stress components:

B =oph, T SlQYy + SisZ, + S14Y. + S15Z, + Sl6Xy ;
ew = SQlXx + SQQY.’/ + SQ3Z: CE SQ4Y: + 825Z_\. + SQGXy 2
€ = SuX, T+ 832Yy + Ss3Z. + SaqY: + SasZ + SaeX,,
€yz = SuX, + S42Yy + SysZ + SugY: + SysZe t S46Xy ;
€z = S5: X, + SsoY, + SsaZ, + Ss4Y. + SssZ,. + SgeX,,
exy == 361Xx + SGZYy + SG3Z: + 864Y: + Sﬁsz\ s SGGXy %

Xx' = Clle.\:\' + Clzeyy+ C13e;:+ C14ey:+ CISe:_\'+ ClGexy >

Y, =Cgey + Coseyyt Cose.t Cosey.t Cose T Coplry
Z. = Cgiey + Caoeyy+ Copest Cageyet Coset Coelyy
Y, = Cye + Cygeyy+ Cyse.+ Cpeyt Cygert Caelry
Z.= Cyie., + Csoey+ Csae .t Cogeyt Csst Cselyy

Xy = Cﬁle.\:\' T C(izeyy+ C63e::+ C64ey.:+ C6Se,:\'+ CGGe.\'y ¢

For six strain components
(37)

For six stress components
(38)

The quantities S;;, S;5 ... are called elastic compliance constants or

elastic constants; the quantities C,;, Cys, . .. are called the elastic stiffness

constants or moduli of elasticity. The Ss have the dimensions of [areal/
[force] or [volume]/[energy]. The C’s have the dimensions of [force]/[area] or

[energy]/[volume].



. 1st consideration

The stress components are found from the derivative of U with respect to
the associated strain component. This result follows from the definition of
potential energy. Consider the stress X, applied to one face of a unit cube, the
opposite face being held at rest:

_oU _oU_~
From Eqg. 38 X, = S - Cpe t+

DO | =

6 ~ ~
322 (Cig+Cares . *(41)

Note that only the combination é(Caﬂ + Cg,) enters the stress-strain relations.
It follows that the elastic stiffness constants are symmetrical:

CaB = %(Caﬂ +CBa) i CBa c (42)

Thus the thirty-six elastic stiffness constants are reduced to twenty-one.

Reduce C’s from 36 down to 21 |



II. 2"d Consideration

Elastic Stiffness Constants of Cubic Crystals

The number of independent elastic stiffness constants is reduced further
if the crystal possesses symmetry elements. We now show that in cubic crystals
there are only three mdeperﬂent stlffness.constants. ~ Only Cy Cy, Cyy

We assert that the elastic energy density of a cubic crystal s

= 2 | 2 2 2 2 | 2
U= @en T, e )+ @(eyz +en tegy) +®eyyem Tl Culy) (43)J

For cubic crystals only
and that no other quadratic terms occur; that is, y

N S By, 55) 4 (€xey, +7) (44)

do not occur.



The minimum symmetry requirement for a cubic structure is the exis-
tence of four three-fold rotation axes. The axes are in the [111] and equivalent
directions (Fig. 17). The effect of a rotation of 277/3 about these four axes is to
interchange the x, y, z axes according to the schemes

LY~ -7 ; —ETFE YRR (45)

2

Xg>—y—x ;

>

g

according to the axis chosen. Under the first of these schemes, for example,
2 +e2 + g 4

O P, e2. — e ez + e

xx >

and similarly for the other terms in parentheses in (43). Thus (43) is invariant

under the operations considered. But each of the terms exhibited in (44) is
odd in one or more indices. A rotation in the set (45) can be found which will

change the sign of the term, because e,, = —e,_,), for example. Thus the
terms (44) are not invariant under the required operations.




Figure 17 Rotation by 27/3 about the axis
marked 3 changes x = y; y — z; and z — x.



It remains to verify that the numerical factors in (43) are correct. By (41),
aU/aexx - X‘ = Cnexx . C12(eyy + ezz) ¥ (46)
The appearance of C,e,, agrees with (38). On further comparison, we see that

(1) Cie=Cys ; (2) Cuu=C=Cip=0 . (47)

Further, from (43), | (1) Becausey is equivalent to z for a cubic crystal
(2) This is due to the basic definitions of C,,, C;5, Cy6

8U/de,, = X, =(Cule, ; ' (48)

on comparison with (38) we have

(B)C61 =Ce=Cg=Cp=Cp5=0; (4)Cg=Cyy =Css (49)




Thus from (43) we find that the array of values of the elastic stiffness
constants is reduced for a cubic crystal to the matrix

Thus we have
only Cyy, Cyp, Cyy

(50)

D

For cubic crystals the stiffness and compliance constants are related by

Cu= 1/84 ; Cii—Crp=(Su—S1)";
O F 20w =18, +285 ) . (51)

These relations follow on evaluating the inverse matrix to (50).




Bulk Modulus and Compressibility See eq. 35

Consider the uniform dilation e, = Eyy = G For this deformation the
energy density (43) of a cubic crystal is

U=3%(Cy +2C,,)8% . (52)

We may define the|bulk modulus B by the relation

U=3iBé&? , (53)

which is equivalent to the definition —V dp/dV. For a cubic crystal,

B = %(Cll +2Cyy) . (54)

The|compressibility K is defined as K = 1/B. [Values of B and K are given in
Table 3.




Elastic Waves in Cubic Crystals

Volume Ax Ay Az

Figure 18 Cube of volume Ax Ay Az acted
on by a stress —X,(x) on the face at x, and

s)
X (x + Ax) = X (x) + _E)% Ax on the parallel
face at x+ Ax. The net force is

i)
(% Ax)Ay Az. Other forces in the x direction

arise from the variation across the cube of
the stresses X, and X, which are not shown. The
net x component of the force on the cube is

X, 9X, 9X,
Fx—<ax+ay+az>AxAyAz.

The force equals the mass of the cube times
the component of the acceleration in the x
direction. The mass is p Ax Ay Az, and the
acceleration is 8*u/dt>.




LT A Ay A 2“ aX+6X"+8X:AMA~

o - |Ax Ay Az = Ax Ay Az p dy | oz J
The X,, X,, and X, are substituted from egs. (38) and (50) as:
X, = C11e +C12e + (e,

Y, = Cpey,
X = ZX=C44ezx
displacement in x-direction
azu ae’t\‘ aeyy ae~~ de...
il A C Lo + pirds Nl
ot2 g T OBy T 8x + C44 a 0z
e, = Ak
ey, = V/y
from eq. 31 & 32 e, = w/a

e, = Au/dy+ v/
e,,= Au/cr+ A/

o*u 0%u u . % 9> 92
—=C L oy, | 2 +(C,o + = =
P 582 11 8r2 44 <8y2 342 (C12 C44> ox dy T Jx 0z



9%u 0%u u |, du 00 9>
—=C =S +Cyu| S+ ]+ (Cpu+ w
p no 44 <8y2 922 (C1o+Cyu) 5x 0y + 3% 0z

5 ik 8% , & 0’ i

dy” a? 9z dx dy  dy 9z

0*w . 0*w w |, 9*w o’u 0%
Pae g C44<ax2 Tar) T Crot Cad\graz T ayaz) - (57¢)

Longitudinal Wave

(solution of eq. 57a): % =y eap i — ag) , (58)

K = 2m/A Wavevector

w = 27y Angular Frequency

=) w2P = C11K2 v,=VA =w/K= (Cll/ml/:z



Transversal Wave (wavevector along x direction, displacement along y direction)

v = v, exp [i(Kx — wt)]

g

Us = <C44/p)1/2



Waves in the [110] Direction

a) Transversal Waves: propagates in xy plane, displacement in z direction

w = w, exp [i(Kx + Ky — wt)]

w’p = Cy (K3 + Kﬁ) = CuK®

b) propagation in xy plane, displacement in xy direction

u =ugexp [i((Kx + Ky — ot)] ; = vy exp [i(Kx + Ky — ot)] . (66)
From (57a) and (57b),

w’pu = (C;,K; + C44K3)u +(Cp + Cu)KKp ;

: 67
w’pv = (CHK; +C K2 + (Cyy + CuwKKu . o



K,=K,=K/V2

l —w’p+3(Cy; + Cu)K? 5(Crp+ C)K’ oy (68)
E(Clz + C44>K2 _0)210 + ’.=12<C11 + C44)K2
This equation has the roots
w’p = 3(C1+Crp+ 2CwK? ; w'p= 3(C11— C1p)K* (69)
/= v
u=-v

longitudinal wave (displacement along [110] and || K

%(Cn + C12 R 2C44)K2U = (Cu + C44)K u (Clz g C44>K ) (70)

transversal wave (displacement along [1-10] and perpendicular to K

é(cn ClO)Kz (Cn + C44)K u + (C12 i C44>K



AT 3T /
T— N

K/ \K T

Wave in [100] direction Wave in [110] direction Wave in [111] direction
L Cll % %(Cll + C12 I 2C44) L %(Cll + 2C12 + 4C44)
T:C44 T11C44 TI%(C}I—C12+ C44)

Ty:3(C11—Cio)

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa-
gation directions in cubic crystals. The two transverse modes are degenerate for propagation in
the [100] and [111] directions.



Selected values of the adiabatic elastic stiffness constants of cubic crystals
at low temperatures and at room temperature are given in Table 11. Notice the
general tendency for the elastic constants to decrease as the temperature is in-
creased. Further values at room temperature alone are given in Table 12.

Table 11 Adiabatic elastic stiffness constants of cubic crystals
at low temperature and at room temperature

The values given at 0 K were obtained by extrapolation of measurements carried out

down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith.
G S R G SRR S R R S R R S R R R e e e R LR e B RS R T R SR S e

Stiffness constants, in 10'2 dyne/cm® (10" N/m?)

Crystal Cu Cie Cu Temperature, K Density, g/cm3
R R T B T O R R
W 5.326 2.049 1.631 0 19.317
5.233 2.045 1.607 300 —
Ta 2.663 1.582 0.874 0 16.696
2.609 1.574 0.818 300 —
Cu 1.762 1.249 0.818 0 9.018
1.684 1.214 0.754 300 e
Ag 1.315 0.973 0.511 0 10.635
1.240 0.937 0.461 300 —
Au 2.016 1.697 0.454 0 19.488
1.923 1.631 0.420 300 —
Al 1.143 0.619 0.316 0 2.733
1.068 0.607 0.282 300 -
K 0.0416 0.0341 0.0286 4
0.0370 0.0314 0.0188 295
Pb 0.555 0.454 0.194 0 11.599
0.495 0.423 0.149 300 —
Ni 2.612 1.508 1.317 0 8.968
2.508 1.500 1.235 300 —
Pd 2.341 1.761 0.712 0 12,132
2.271 1.761 0.717 300 —



